| Gene name | Length | Location | Length of alignment | Identity (%) | Coverage (%) | E-value |
|---|---|---|---|---|---|---|
| repA | 1101 | 1 - 1101 (+) | 1101 | 99 | 100 | 0 |
| ORF1832 | 4779 | 61717 - 66495 (+) | 4779 | 100 | 87 | 0 |
| ORF1832 | 725 | 59772 - 60496 (+) | 725 | 100 | 13 | 0 |
| RHS1 | 2492 | 108800 - 111291 (+) | 2492 | 100 | 59 | 0 |
| Type match | Model name | Model type | Location | E-value | Identity | ||||
|---|---|---|---|---|---|---|---|---|---|
| Perfect | CMY-6 | protein homolog model | 56970 - 58115(+) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
AMR Gene Family
CMY beta-lactamases are plasmid-mediated class C beta-lactamases that encodes for resistance to cephamycins.
|
|||||||||
| Strict | AAC(6')-Ib10 | protein homolog model | 101105 - 101710(+) | 5.26673e-132 | 92.15 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Acetylation of the aminoglycoside antibiotic on the amino group at position 6'.
Antibiotic
Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin.
Antibiotic
Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae.
Antibiotic
A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci.
Antibiotic
Gentamicin B is a semisynthetic aminoglycoside antibacterial.
|
|||||||||
| Perfect | NDM-4 | protein homolog model | 102650 - 103462(+) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
AMR Gene Family
NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins.
Antibiotic
Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death.
|
|||||||||
| Perfect | mphA | protein homolog model | 118686 - 119591(+) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity.
Antibiotic
Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited.
Antibiotic
Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited.
Antibiotic
Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis.
Antibiotic
Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections.
Antibiotic
Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation.
Antibiotic
Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis.
Antibiotic
Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis.
Drug Class
Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins.
|
|||||||||
| Perfect | sul1 | protein homolog model | 126229 - 127068(-) | 0 | 100 % | ||||
|
AMR Gene Family
The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide.
Antibiotic
Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides.
Antibiotic
Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides.
Antibiotic
Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability.
Antibiotic
Mafenide is a sulfonamide used topically for treating burns.
Antibiotic
Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis.
Antibiotic
Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase.
Drug Class
Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway.
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
|
|||||||||
| Perfect | QnrB6 | protein homolog model | 127604 - 128284(+) | 7.76886e-171 | 100 % | ||||
|
AMR Gene Family
Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics
Antibiotic
Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome.
Antibiotic
Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication.
Antibiotic
Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases.
Antibiotic
Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa.
Antibiotic
Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments.
Antibiotic
Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes.
Antibiotic
Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Resistance Mechanism
Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance.
|
|||||||||
| Perfect | sul1 | protein homolog model | 131695 - 132534(-) | 0 | 100 % | ||||
|
AMR Gene Family
The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide.
Antibiotic
Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides.
Antibiotic
Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides.
Antibiotic
Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability.
Antibiotic
Mafenide is a sulfonamide used topically for treating burns.
Antibiotic
Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis.
Antibiotic
Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase.
Drug Class
Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway.
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
|
|||||||||
| Strict | aadA16 | protein homolog model | 132992 - 133837(-) | 0 | 98.93 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
AMR Gene Family
Nucleotidylylation of streptomycin at the hydroxyl group at position 3''
Antibiotic
Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation.
|
|||||||||
| Perfect | dfrA27 | protein homolog model | 134018 - 134491(-) | 9.72012e-119 | 100 % | ||||
|
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
AMR Gene Family
Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance.
Antibiotic
Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic.
Drug Class
Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis.
|
|||||||||
| Perfect | arr-3 | protein homolog model | 134624 - 135076(-) | 2.33764e-112 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Enzyme responsible for the ADP-ribosylative inactivation of rifampin at the 23-OH position using NAD+.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Antibiotic
Rifaximin is a semi-synthetic rifamycin used to treat traveller's diarrhea. Rifaximin inhibits RNA synthesis by binding to the beta subunit of bacterial RNA polymerase.
Antibiotic
Rifabutin is a semisynthetic rifamycin used in tuberculosis therapy. It inhibits DNA-dependent RNA synthesis.
Antibiotic
Rifapentine is a semisynthetic rifamycin that inhibits DNA-dependent RNA synthesis. It is often used in the treatment of tuberculosis and leprosy.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
|
|||||||||
| Perfect | AAC(6')-Ib-cr | protein homolog model | 135173 - 135772(-) | 2.05677e-150 | 100 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Acetylation of the aminoglycoside antibiotic on the amino group at position 6'.
Antibiotic
Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin.
Antibiotic
Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae.
Antibiotic
A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci.
Antibiotic
Gentamicin B is a semisynthetic aminoglycoside antibacterial.
Antibiotic
Plazomicin is a neoglycoside, or next-generation, aminoglycoside, that has been identified as a potentially useful agent to combat drug-resistant bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa.
Antibiotic
Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
|
|||||||||