Adjuvant
Clavulanic acid is a beta-lactamase inhibitor (marketed by GlaxoSmithKline, formerly Beecham) combined with penicillin group antibiotics to overcome certain types of antibiotic resistance. It is used to overcome resistance in bacteria that secrete beta-lactamase, which otherwise inactivates most penicillins.
AMR Gene Family
NDM beta-lactamases or New Delhi metallo-beta-lactamases are class B beta-lactamases that confer resistance to a broad range of antibiotics including carbapenems, cephalosporins and penicillins.
Antibiotic
Amoxicillin is a moderate-spectrum, bacteriolytic, beta-lactam antibiotic used to treat bacterial infections caused by susceptible microorganisms. A derivative of penicillin, it has a wider range of treatment but remains relatively ineffective against Gram-negative bacteria. It is commonly taken with clavulanic acid, a beta-lactamase inhibitor. Like other beta-lactams, amoxicillin interferes with the synthesis of peptidoglycan.
Antibiotic
Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis.
Antibiotic
Meropenem is an ultra-broad spectrum injectable antibiotic used to treat a wide variety of infections, including meningitis and pneumonia. It is a beta-lactam and belongs to the subgroup of carbapenem, similar to imipenem and ertapenem.
Antibiotic
Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes.
Antibiotic
An antibiotic cocktail containing the beta-lactam antibiotic Amoxicillin and the beta-lactamase inhibitor Clavulanic Acid (potassium clavulanate).
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.