| Gene name | Length | Location | Length of alignment | Identity (%) | Coverage (%) | E-value |
|---|---|---|---|---|---|---|
| repA | 1101 | 1968401 - 1969501 (-) | 1101 | 94 | 100 | 0 |
| ORF1832 | 5503 | 1922717 - 1928215 (-) | 5503 | 87 | 100 | 0 |
| AriB | 1156 | 1989833 - 1990988 (-) | 1156 | 100 | 44 | 0 |
| AriB | 111 | 1989721 - 1989831 (-) | 111 | 100 | 4 | 1.17865E-52 |
| RA1_oriV | 850 | 1967446 - 1968295 (-) | 850 | 96 | 100 | 0 |
| Type match | Model name | Model type | Location | E-value | Identity | ||||
|---|---|---|---|---|---|---|---|---|---|
| Strict | marA | protein homolog model | 271876 - 272259(+) | 3.85742e-89 | 93.7 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin.
Antibiotic
Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases.
Drug Class
Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
Antibiotic
Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
AMR Gene Family
These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein.
Drug Class
Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI).
Resistance Mechanism
Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance.
|
|||||||||
| Strict | Klebsiella pneumoniae KpnF | protein homolog model | 349387 - 349716(-) | 9.07988e-65 | 86.24 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited.
Drug Class
Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins.
Antibiotic
Ceftriaxone is a third-generation cephalosporin antibiotic. The presence of an aminothiazolyl sidechain increases ceftriazone's resistance to beta-lactamases. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Antibiotic
Colistin A, or polymyxin E1, has a 6-octanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria.
Antibiotic
Colistin B, or polymyxin E2, has a 6-heptanoic acid lipid tail. Polymyxins disrupt the cell membrane of Gram-negative bacteria.
Drug Class
Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics.
Antibiotic
Cefepime (INN) is a fourth-generation cephalosporin antibiotic developed in 1994. It contains an aminothiazolyl group that decreases its affinity with beta-lactamases. Cefepime shows high binding affinity with penicillin-binding proteins and has an extended spectrum of activity against Gram-positive and Gram-negative bacteria, with greater activity against both Gram-negative and Gram-positive organisms than third-generation agents.
|
|||||||||
| Strict | ACT-8 | protein homolog model | 760376 - 761518(-) | 0 | 70.18 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
AMR Gene Family
ACT beta-lactamases, also known as AmpC beta-lactamases, are cephalosporinases that cannot be inhibited by clavulanate. These enzymes are encoded by genes located on the chromosome and can be induced by the presence of beta-lactam antibiotics. However recently, these genes have been found on plasmids and expressed at high constitutive levels in Escherichia coli and Klebsiella pneumoniae.
|
|||||||||
| Strict | msbA | protein homolog model | 838956 - 840704(-) | 0 | 94.16 % | ||||
|
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. ATP-binding cassette (ABC) transporters are present in all cells of all organisms and use the energy of ATP binding/hydrolysis to transport substrates across cell membranes.
Antibiotic
Metronidazole is a nitroimidazole that is active against anaerobic bacteria and protozoa. It is not effective against aerobic bacteria. Nitroimidazoles act by oxidizing DNA causing strand breaks and cell death.
Drug Class
Nitroimidazoles are a group of drugs that have both antiprotozoal and antibacterial activity, classified with respect to the location of the nitro functional group.
|
|||||||||
| Strict | Escherichia coli mdfA | protein homolog model | 947135 - 948370(-) | 0 | 86.24 % | ||||
|
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Drug Class
Benzalkonium chloride is a type of cationic surfactant. It is an organic salt called a quaternary ammonium compound. It has three main categories of use: as a biocide, a cationic surfactant, and as a phase transfer agent.
Drug Class
Rhodamine is a flurone dye that is often used as a tracer due to determine the rate and direction of flow and transport. It permeates the cell membrane of gram negative organisms E. coli and P. aeruginosa.
|
|||||||||
| Strict | acrB | protein homolog model | 1379563 - 1382703(+) | 0 | 92.54 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin.
Antibiotic
Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Antibiotic
Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Drug Class
Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI).
|
|||||||||
| Strict | Escherichia coli ampH | protein homolog model | 1479457 - 1480671(+) | 0 | 86.75 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
AMR Gene Family
AmpC beta-lactamases are clinically important class C beta-lactamase enzymes which confer resistance to cephalosporins and penicillin-like antibiotics. AmpC beta-lactamases are typically found in Enterobacteriaceae, and were described in Escherichia coli in 1940 as the first reported enzymatic deactivation of penicillin. The name AmpC connects these enzymes functionally across many species, however these enzymes are generally unnamed and not phylogenetically related.
|
|||||||||
| Strict | sul1 | protein homolog model | 1829594 - 1830775(-) | 0 | 99.64 % | ||||
|
AMR Gene Family
The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide.
Antibiotic
Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides.
Antibiotic
Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides.
Antibiotic
Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability.
Antibiotic
Mafenide is a sulfonamide used topically for treating burns.
Antibiotic
Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis.
Antibiotic
Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase.
Drug Class
Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway.
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
|
|||||||||
| Strict | catB2 | protein homolog model | 1830944 - 1831576(-) | 1.00322e-159 | 99.52 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
AMR Gene Family
Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini
Antibiotic
Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit.
Antibiotic
Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3).
|
|||||||||
| Strict | ANT(3'')-IIa | protein homolog model | 1831629 - 1832420(-) | 0 | 99.62 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Nucleotidylylation of streptomycin at the hydroxyl group at position 3''
|
|||||||||
| Strict | AAC(6')-Ib9 | protein homolog model | 1833402 - 1834028(-) | 2.48966e-144 | 96.08 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Acetylation of the aminoglycoside antibiotic on the amino group at position 6'.
Antibiotic
Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin.
Antibiotic
Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae.
Antibiotic
A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci.
Antibiotic
Gentamicin B is a semisynthetic aminoglycoside antibacterial.
|
|||||||||
| Perfect | VIM-1 | protein homolog model | 1834064 - 1834864(-) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur.
AMR Gene Family
The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
|
|||||||||
| Strict | SHV-2A | protein homolog model | 1839235 - 1840095(+) | 0 | 99.3 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
AMR Gene Family
SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known.
|
|||||||||
| Strict | sul1 | protein homolog model | 1847675 - 1848856(-) | 0 | 99.64 % | ||||
|
AMR Gene Family
The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide.
Antibiotic
Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides.
Antibiotic
Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides.
Antibiotic
Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability.
Antibiotic
Mafenide is a sulfonamide used topically for treating burns.
Antibiotic
Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis.
Antibiotic
Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase.
Drug Class
Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway.
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
|
|||||||||
| Strict | catB2 | protein homolog model | 1849025 - 1849657(-) | 1.00322e-159 | 99.52 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
AMR Gene Family
Inactivates chloramphenicol by addition of an acyl group. cat is used to describe many variants of the chloramphenicol acetyltransferase gene in a range of organisms including Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Bacillus clausii, Bacillus subtilis, Campylobacter coli, Enterococcus faecalis, Enterococcus faecium, Lactococcus lactis, Listeria monocytogenes, Listonella anguillarum Morganella morganii, Photobacterium damselae subsp. piscicida, Proteus mirabilis, Salmonella typhi, Serratia marcescens, Shigella flexneri, Staphylococcus aureus, Staphylococcus haemolyticus, Staphylococcus intermedius, Streptococcus agalactiae, Streptococcus suis and Streptomyces acrimycini
Antibiotic
Azidamfenicol is a water soluble derivative of chloramphenicol, sharing the same mode of action of inhibiting peptide synthesis by interacting with the 23S RNA of the 50S ribosomal subunit.
Antibiotic
Derivative of Chloramphenicol. The nitro group (-NO2) is substituted by a sulfomethyl group (-SO2CH3).
|
|||||||||
| Strict | ANT(3'')-IIa | protein homolog model | 1849710 - 1850501(-) | 0 | 99.62 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Nucleotidylylation of streptomycin at the hydroxyl group at position 3''
|
|||||||||
| Strict | AAC(6')-Ib9 | protein homolog model | 1851483 - 1852109(-) | 2.35356e-145 | 96.57 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Acetylation of the aminoglycoside antibiotic on the amino group at position 6'.
Antibiotic
Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin.
Antibiotic
Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae.
Antibiotic
A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci.
Antibiotic
Gentamicin B is a semisynthetic aminoglycoside antibacterial.
|
|||||||||
| Perfect | VIM-1 | protein homolog model | 1852145 - 1852945(-) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur.
AMR Gene Family
The Verone integron-encoded metallo-beta-lactamase (VIM) family was reported from Italy in 1999. There are, to date, 23 reported variants. VIM enzymes mostly occur in P. aeruginosa, also P. putida and, very rarely, Enterobacteriaceae. Integron-associated, sometimes within plasmids. Hydrolyses all beta-lactams except monobactams, and evades all beta-lactam inhibitors. There is a strong incidence of these in East Asia.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
|
|||||||||
| Strict | SHV-2A | protein homolog model | 1857317 - 1858177(+) | 0 | 99.3 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
AMR Gene Family
SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known.
|
|||||||||
| Perfect | mphA | protein homolog model | 1861493 - 1862398(+) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Macrolide phosphotransferases (MPH) are enzymes encoded by macrolide phosphotransferase genes (mph genes). These enzymes phosphorylate macrolides in GTP dependent manner at 2'-OH of desosamine sugar thereby inactivating them. Characterized MPH's are differentiated based on their substrate specificity.
Antibiotic
Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited.
Antibiotic
Roxithromycin is a semi-synthetic, 14-carbon ring macrolide antibiotic derived from erythromycin. It is used to treat respiratory tract, urinary and soft tissue infections. Roxithromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited.
Antibiotic
Telithromycin is a semi-synthetic derivative of erythromycin. It is a 14-membered macrolide and is the first ketolide antibiotic to be used in clinics. Telithromycin binds the 50S subunit of the bacterial ribosome to inhibit protein synthesis.
Antibiotic
Clarithromycin is a methyl derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome and is used to treat pharyngitis, tonsillitis, acute maxillary sinusitis, acute bacterial exacerbation of chronic bronchitis, pneumonia (especially atypical pneumonias associated with Chlamydia pneumoniae or TWAR), and skin structure infections.
Antibiotic
Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation.
Antibiotic
Dirithromycin is an oxazine derivative of erythromycin, sharing the 14-carbon macrolide ring. The antibiotic binds to the 50S subunit of the ribosome to inhibit bacterial protein synthesis.
Antibiotic
Oleandomycin is a 14-membered macrolide produced by Streptomyces antibioticus. It is ssimilar to erythromycin, and contains a desosamine amino sugar and an oleandrose sugar. It targets the 50S ribosomal subunit to prevent protein synthesis.
Drug Class
Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins.
|
|||||||||
| Strict | dfrA14 | protein homolog model | 1866104 - 1866577(-) | 2.51244e-118 | 98.73 % | ||||
|
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
AMR Gene Family
Alternative dihydropteroate synthase dfr present on plasmids produces alternate proteins that are less sensitive to trimethoprim from inhibiting its role in folate synthesis, thus conferring trimethoprim resistance.
Antibiotic
Trimethoprim is a synthetic 5-(3,4,5- trimethoxybenzyl) pyrimidine inhibitor of dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid. Tetrahydrofolic acid is an essential precursor in the de novo synthesis of the DNA nucleotide thymidine. Trimethoprim is a bacteriostatic antibiotic mainly used in the prophylaxis and treatment of urinary tract infections in combination with sulfamethoxazole, a sulfonamide antibiotic.
Drug Class
Diaminopyrimidines are a class of organic compounds containing a pyrimidine ring substituted by two amine groups. They are inhibitors of dihydrofolate reductase, an enzyme critical for DNA synthesis.
|
|||||||||
| Perfect | sul2 | protein homolog model | 1990132 - 1990947(+) | 0 | 100 % | ||||
|
AMR Gene Family
The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide.
Antibiotic
Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides.
Antibiotic
Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides.
Antibiotic
Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability.
Antibiotic
Mafenide is a sulfonamide used topically for treating burns.
Antibiotic
Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis.
Antibiotic
Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase.
Drug Class
Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway.
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
|
|||||||||
| Strict | APH(3'')-Ib | protein homolog model | 1991008 - 1991811(+) | 0 | 99.25 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
AMR Gene Family
Phosphorylation of streptomycin on the hydroxyl group at position 3''
|
|||||||||
| Strict | APH(6)-Id | protein homolog model | 1991811 - 1992647(+) | 0 | 99.28 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Phosphorylation of streptomycin on the hydroxyl group at position 6
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
|
|||||||||
| Perfect | QnrS1 | protein homolog model | 1996695 - 1997351(-) | 6.836e-167 | 100 % | ||||
|
AMR Gene Family
Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics
Antibiotic
Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome.
Antibiotic
Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication.
Antibiotic
Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases.
Antibiotic
Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa.
Antibiotic
Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments.
Antibiotic
Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes.
Antibiotic
Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Resistance Mechanism
Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance.
|
|||||||||
| Strict | FosA2 | protein homolog model | 2125540 - 2125965(-) | 2.8503e-85 | 80 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Catalyzes the addition of a thiol group from a nucleophilic molecule to fosfomycin.
Drug Class
Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction.
|
|||||||||
| Strict | CRP | protein homolog model | 3090948 - 3091580(-) | 2.31423e-158 | 99.05 % | ||||
|
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited.
Drug Class
Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Antibiotic
Cloxacillin is a semisynthetic, isoxazolyl penicillin derivative in the beta-lactam class of antibiotics. It interferes with peptidogylcan synthesis and is commonly used for treating penicillin-resistant Staphylococcus aureus infections.
Antibiotic
Oxacillin is a penicillinase-resistant beta-lactam. It is similar to methicillin, and has replaced methicillin in clinical use. Oxacillin, especially in combination with other antibiotics, is effective against many penicillinase-producing strains of Staphylococcus aureus and Staphylococcus epidermidis.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
|
|||||||||
| Strict | bacA | protein homolog model | 3360084 - 3360902(+) | 0 | 93.77 % | ||||
|
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
Drug Class
Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics.
AMR Gene Family
Undecaprenyl phosphate is a universal lipid carrier of glycan biosynthetic intermediates for carbohydrate polymers that are exported to the bacterial cell envelope. Antibiotics that targets this compound or proteins associated with the production of this compound leads to cell death.
Antibiotic
Bacitracin A is the primary component of bacitracin. It contains many uncommon amino acids and interferes with bacterial cell wall synthesis.
Antibiotic
Bacitracin B is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It differs from Bacitracin A with a valine instead of an isoleucine in its peptide.
Antibiotic
Bacitracin F is a component of bacitracin, an antibiotic mixture that interferes with bacterial cell wall synthesis. It is formed when the thiazoline ring of bacitracin A is oxidatively deaminated.
|
|||||||||
| Strict | emrB | protein homolog model | 3706022 - 3707569(-) | 0 | 92.67 % | ||||
|
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
|
|||||||||
| Strict | emrR | protein homolog model | 3708883 - 3709413(-) | 1.08167e-122 | 93.14 % | ||||
|
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
|
|||||||||
| Strict | acrD | protein homolog model | 3960731 - 3963844(-) | 0 | 92.27 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
|
|||||||||
| Strict | baeR | protein homolog model | 4274079 - 4274804(-) | 2.17875e-171 | 96.23 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
Antibiotic
Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling.
Drug Class
Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling.
|
|||||||||
| Strict | mdtC | protein homolog model | 4277616 - 4280693(-) | 0 | 92.09 % | ||||
|
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Antibiotic
Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling.
Drug Class
Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling.
|
|||||||||
| Strict | mdtB | protein homolog model | 4280694 - 4283819(-) | 0 | 89.61 % | ||||
|
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Antibiotic
Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling.
Drug Class
Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling.
|
|||||||||
| Strict | Haemophilus influenzae PBP3 conferring resistance to beta-lactam antibiotics | protein variant model | 1705153 - 1706919(-) | 0 | 52.92 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
AMR Gene Family
Mutations in PBP transpeptidases that change the affinity for penicillin thereby conferring resistance to penicillin antibiotics
|
|||||||||
| Strict | Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin | protein variant model | 2471917 - 2473101(-) | 0 | 97.46 % | ||||
|
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
AMR Gene Family
Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics.
Antibiotic
Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance.
Drug Class
Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP.
|
|||||||||
| Strict | Escherichia coli UhpT with mutation conferring resistance to fosfomycin | protein variant model | 2621032 - 2622423(-) | 0 | 93.74 % | ||||
|
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
Drug Class
Fosfomycin (also known as phosphomycin and phosphonomycin) is a broad-spectrum antibiotic produced by certain Streptomyces species. It is effective on gram positive and negative bacteria as it targets the cell wall, an essential feature shared by both bacteria. Its specific target is MurA (MurZ in E.coli), which attaches phosphoenolpyruvate (PEP) to UDP-N-acetylglucosamine, a step of commitment to cell wall synthesis. In the active site of MurA, the active cysteine molecule is alkylated which stops the catalytic reaction.
AMR Gene Family
UhpT encodes a transporter that can import fosfomycin-type drugs into bacterial cells. Mutations to UhpT confer resistance.
|
|||||||||
| Strict | Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin | protein variant model | 3106474 - 3107658(+) | 0 | 97.72 % | ||||
|
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
AMR Gene Family
Sequence variants of elongation factor Tu that confer resistance to elfamycin antibiotics.
Antibiotic
Pulvomycin is a polyketide antibiotic that binds elongation factor Tu (EF-Tu) to inhibit protein biosynthesis by preventing the formation of the ternary complex (EF-Tu*GTP*aa-tRNA). Phenotypically, it was shown that pulvomycin sensitivity is dominant over resistance.
Drug Class
Elfamycins are molecules that inhibit bacterial elongation factor Tu (EF-Tu), a key protein which brings aminoacyl-tRNA (aa-tRNA) to the ribosome during protein synthesis. Elfamycins defined by their target (EF-Tu), rather than a conserved chemical backbone. Elfamycins follow two mechanisms to disrupt protein synthesis: 1. kirromycins and enacyloxin fix EF-Tu in the GTP bound conformation and lock EF-Tu onto the ribosome, and 2. pulvomycin and GE2270 cover the binding site of aa-tRNA disallowing EF-Tu from being charged with aa-tRNA. All elfamycins cause increased the affinity of EF-Tu for GTP.
|
|||||||||
| Strict | Escherichia coli marR mutant conferring antibiotic resistance | protein overexpression model | 271423 - 271857(+) | 2.31913e-94 | 86.81 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin.
Antibiotic
Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
Antibiotic
Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
Drug Class
Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI).
|
|||||||||
| Strict | Escherichia coli acrR with mutation conferring multidrug antibiotic resistance | protein overexpression model | 1377551 - 1378204(-) | 1.70996e-137 | 85.17 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin.
Antibiotic
Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
Antibiotic
Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
Drug Class
Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI).
|
|||||||||