| Gene name | Length | Location | Length of alignment | Identity (%) | Coverage (%) | E-value |
|---|---|---|---|---|---|---|
| repA | 1101 | 5701906 - 5703006 (+) | 1101 | 100 | 100 | 0 |
| I1 | 428 | 5616729 - 5617156 (+) | 428 | 100 | 100 | 0 |
| RHS2 | 4263 | 5666025 - 5670287 (+) | 4263 | 100 | 100 | 0 |
| AriB | 1156 | 5650500 - 5651655 (+) | 1156 | 100 | 44 | 0 |
| Type match | Model name | Model type | Location | E-value | Identity | ||||
|---|---|---|---|---|---|---|---|---|---|
| Perfect | KPC-1 | protein homolog model | 20611 - 21492(+) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
AMR Gene Family
Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases are notorious for their ability to efficiently hydrolyze carbapenems, unlike other Ambler Class A beta-lactamases. There are currently 9 variants reported worldwide. These enzymes were first isolated from Klebsiella pneumoniae strains in 2001 in the United States. Hospital outbreaks have since been reported in Greece and Israel and KPC carrying strains are now endemic to New York facilities. KPC-1 and KPC-2 have been shown to be identical and are now referred to as KPC-2.
|
|||||||||
| Strict | acrB | protein homolog model | 1358719 - 1361865(-) | 0 | 91.52 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin.
Antibiotic
Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Antibiotic
Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Drug Class
Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI).
|
|||||||||
| Strict | Escherichia coli mdfA | protein homolog model | 1893808 - 1895040(+) | 0 | 85.61 % | ||||
|
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Drug Class
Benzalkonium chloride is a type of cationic surfactant. It is an organic salt called a quaternary ammonium compound. It has three main categories of use: as a biocide, a cationic surfactant, and as a phase transfer agent.
Drug Class
Rhodamine is a flurone dye that is often used as a tracer due to determine the rate and direction of flow and transport. It permeates the cell membrane of gram negative organisms E. coli and P. aeruginosa.
|
|||||||||
| Perfect | SHV-11 | protein homolog model | 2673849 - 2674709(-) | 0 | 100 % | ||||
|
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
AMR Gene Family
SHV-1 shares 68 percent of its amino acids with TEM-1 and has a similar overall structure. The SHV-1 beta-lactamase is most commonly found in K. pneumoniae and is responsible for up to 20% of the plasmid-mediated ampicillin resistance in this species. ESBLs in this family also have amino acid changes around the active site, most commonly at positions 238 or 238 and 240. More than 60 SHV varieties are known.
|
|||||||||
| Strict | marA | protein homolog model | 2696450 - 2696824(-) | 4.82541e-86 | 92.74 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin.
Antibiotic
Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases.
Drug Class
Monobactams are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Unlike penams and cephems, monobactams do not have any ring fused to its four-member lactam structure. Monobactam antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Cephamycins are a group of beta-lactam antibiotics, very similar to cephalosporins. Together with cephalosporins, they form a sub-group of antibiotics known as cephems. Cephamycins are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms. The 7-alpha-methoxy group increases resistance to beta-lactamases.
Antibiotic
Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
AMR Gene Family
These are GBPs that are associated with decreased susceptibility to beta-lactams either through mutations in the porin protein, absence of the porin protein, or expression of the porin protein.
Drug Class
Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI).
Resistance Mechanism
Reduction in permeability to antibiotic, generally through reduced production of porins, can provide resistance.
|
|||||||||
| Strict | mdtC | protein homolog model | 3725042 - 3728119(+) | 0 | 91.61 % | ||||
|
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Antibiotic
Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling.
Drug Class
Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling.
|
|||||||||
| Strict | baeR | protein homolog model | 3731013 - 3731735(+) | 2.95504e-166 | 91.67 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
Antibiotic
Novobiocin is an aminocoumarin antibiotic produced by Streptomyces spheroides and Streptomyces niveus, and binds DNA gyrase subunit B inhibiting ATP-dependent DNA supercoiling.
Drug Class
Aminocoumarin antibiotics bind DNA gyrase subunit B to inhibit ATP-dependent DNA supercoiling.
|
|||||||||
| Strict | Klebsiella pneumoniae KpnG | protein homolog model | 4249060 - 4250232(+) | 0 | 99.74 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome.
Antibiotic
Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Erythromycin is a macrolide antibiotic with a 14-carbon ring that has an antimicrobial spectrum similar to or slightly wider than that of penicillin, and is often used for people that have an allergy to penicillins. Erythromycin may possess bacteriocidal activity, particularly at higher concentrations by binding to the 50S subunit of the bacterial 70S rRNA complex, inhibiting peptidyl-tRNA translocation. Thus, protein synthesis and subsequently structure/function processes critical for life or replication are inhibited.
Antibiotic
Azithromycin is a 15-membered macrolide and falls under the subclass of azalide. Like other macrolides, azithromycin binds bacterial ribosomes to inhibit protein synthesis. The nitrogen substitution at the C-9a position prevents its degradation.
Drug Class
Macrolides are a group of drugs (typically antibiotics) that have a large macrocyclic lactone ring of 12-16 carbons to which one or more deoxy sugars, usually cladinose and desosamine, may be attached. Macrolides bind to the 50S-subunit of bacterial ribosomes, inhibiting the synthesis of vital proteins.
Drug Class
Penems are a class of unsaturated beta-lactam antibiotics with a broad spectrum of antibacterial activity and have a structure which renders them highly resistant to beta-lactamases. All penems are all synthetically made and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. They are structurally similar to carbapenems, however, where carbapenems have a carbon, penems have a sulfur.
Antibiotic
Ceftazidime is a third-generation cephalosporin antibiotic. Like other third-generation cephalosporins, it has broad spectrum activity against Gram-positive and Gram-negative bacteria. Unlike most third-generation agents, it is active against Pseudomonas aeruginosa, however it has weaker activity against Gram-positive microorganisms and is not used for such infections.
Antibiotic
Spectinomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Spectinomycin works by binding to the bacterial 30S ribosomal subunit inhibiting translation.
Drug Class
Carbapenems are a class of beta-lactam antibiotics with a broad spectrum of antibacterial activity, and have a structure which renders them highly resistant to beta-lactamases. Carbapenem antibiotics are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Peptide antibiotics have a wide range of antibacterial mechanisms, depending on the amino acids that make up the antibiotic, although most act to disrupt the cell membrane in some manner. Subclasses of peptide antibiotics can include additional sidechains of other types, such as lipids in the case of the lipopeptide antibiotics.
Antibiotic
Ertapenem is a carbapenem antibiotic and is highly resistant to beta-lactamases like other carbapenems. It inhibits bacterial cell wall synthesis.
Antibiotic
Imipenem is a broad-spectrum antibiotic and is usually taken with cilastatin, which prevents hydrolysis of imipenem by renal dehydropeptidase-I. It is resistant to hydrolysis by most other beta-lactamases. Notable exceptions are the KPC beta-lactamases and Ambler Class B enzymes.
Antibiotic
Piperacillin is an acetylureidopenicillin and has an extended spectrum of targets relative to other beta-lactam antibiotics. It inhibits cell wall synthesis in bacteria, and is usually taken with the beta-lactamase inhibitor tazobactam to overcome penicillin-resistant bacteria.
Antibiotic
Polymyxin B1 is in the family of polymyxin lipopeptides with a 6-methyloctanoic acid acyl group. These antibiotics disrupt the cell membrane of Gram-negative bacteria.
Antibiotic
Polymyxin B2 is in the family of polymyxin lipopeptides with a 6-methylheptanoic acid acyl group. These antibiotics disrupt the cell membrane of Gram-negative bacteria.
Antibiotic
Polymyxin B3 is in the family of polymyxin lipopeptides with an octanoic acid acyl group. These antibiotics disrupt the cell membrane of Gram-negative bacteria.
Antibiotic
Polymyxin B4 is in the family of polymyxin lipopeptides with a heptanoic acid acyl group. These antibiotics disrupt the cell membrane of Gram-negative bacteria.
Antibiotic
Ticarcillin is a carboxypenicillin used for the treatment of Gram-negative bacteria, particularly P. aeruginosa. Ticarcillin's antibiotic properties arise from its ability to prevent cross-linking of peptidoglycan during cell wall synthesis, when the bacteria try to divide, causing cell death.
|
|||||||||
| Perfect | rmtB | protein homolog model | 5628498 - 5629253(+) | 0 | 100 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Dibekacin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Dibekacin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Amikacin is an aminoglycoside antibiotic that works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Sisomicin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Sisomicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Netilmicin is a member of the aminoglycoside family of antibiotics. These antibiotics have the ability to kill a wide variety of bacteria by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth. Netilmicin is not absorbed from the gut and is therefore only given by injection or infusion. It is only used in the treatment of serious infections particularly those resistant to gentamicin.
Antibiotic
Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Tobramycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Tobramycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
A semi-synthetic derivative of gentamicin B (hydroxyamino propionyl genamicin B). It is modified to combat microbial inactivation and has a slightly larger spectrum of activity compared to other aminoglycosides, including Ser marcescens, Enterobacteria, and K pneumoniae.
Antibiotic
A synthetic derivative (1-N-(4-amino-2-hydroxybutyryl) of dibekacin used in Japan. It is active against methicillin-resistant Staph. aureus and shows synergy with ampicillin when treating gentamicin and vancomycin resistant enterocci.
Antibiotic
Gentamicin B is a semisynthetic aminoglycoside antibacterial.
Antibiotic
Gentamicin C is a mixture of gentamicin C1, gentamicin C1a, and gentamicin C2 (these differ in substituents at position C6'). Gentamicin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
A gentamicin class aminoglycoside antibiotic often used in mammalian cell culture work as a selectable marker for the neo cassette (APH3').
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
AMR Gene Family
Methyltransferases that methylate the G1405 position of 16S rRNA, which is part of an aminoglycoside binding site.
|
|||||||||
| Strict | tet(D) | protein homolog model | 5632959 - 5634134(-) | 2.02824e-134 | 53.2 % | ||||
|
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
|
|||||||||
| Strict | AAC(3)-IIc | protein homolog model | 5641898 - 5642593(+) | 4.87202e-165 | 94.81 % | ||||
|
AMR Gene Family
Acetylation of the aminoglycoside antibiotic on the amino group at position 3.
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Antibiotic
Neomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Neomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
Kanamycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Kanamycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Antibiotic
An aminoglycoside antibiotic used for the treatment of parasitic infections. It is similar to neomycin sharing a similar spectrum of activity, but its hydroxyl group at the 6'-position instead of an amino group makes it resistant to AAC(6') modifying enzymes.
Antibiotic
Butirosin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Butirosin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
|
|||||||||
| Strict | APH(6)-Id | protein homolog model | 5648841 - 5649677(-) | 0 | 99.64 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
AMR Gene Family
Phosphorylation of streptomycin on the hydroxyl group at position 6
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
|
|||||||||
| Strict | APH(3'')-Ib | protein homolog model | 5649677 - 5650480(-) | 0 | 99.63 % | ||||
|
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
AMR Gene Family
Phosphorylation of streptomycin on the hydroxyl group at position 3''
|
|||||||||
| Perfect | sul2 | protein homolog model | 5650541 - 5651356(-) | 0 | 100 % | ||||
|
AMR Gene Family
The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide.
Antibiotic
Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides.
Antibiotic
Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides.
Antibiotic
Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability.
Antibiotic
Mafenide is a sulfonamide used topically for treating burns.
Antibiotic
Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis.
Antibiotic
Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase.
Drug Class
Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway.
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
|
|||||||||
| Strict | Escherichia coli marR mutant conferring antibiotic resistance | protein overexpression model | 2696845 - 2697279(-) | 8.24791e-89 | 83.33 % | ||||
|
Drug Class
Cephalosporins are a class of beta-lactam antibiotics, containing the beta-lactam ring fused with a dihydrothiazolidine ring. Together with cephamycins they belong to a sub-group called cephems. Cephalosporin are bactericidal, and act by inhibiting the synthesis of the peptidoglycan layer of bacterial cell walls. The peptidoglycan layer is important for cell wall structural integrity, especially in Gram-positive organisms.
Drug Class
Penams, often referred to as penicillins, are a group of antibiotics derived from Penicillium fungi. Penicillin antibiotics are historically significant because they are the first drugs that were effective against many previously serious diseases such as syphilis and Staphylococcus infections. Penicillins are still widely used today, though many types of bacteria are now resistant. All penicillins are beta-lactam antibiotics in the penam sub-group, and are used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms.
Antibiotic
Chloramphenicol is a bacteriostatic antimicrobial originally derived from the bacterium Streptomyces venezuelae. It was the first antibiotic to be manufactured synthetically on a large scale. It functions by inhibiting peptidyl transferase activity of the bacterial ribosome, binding to A2451 and A2452 residues in the 23S rRNA of the 50S ribosomal subunit and preventing peptide bond formation.
Drug Class
Phenicols are broad spectrum bacteriostatic antibiotics acting on bacterial protein synthesis. More specifically, the phenicols block peptide elongation by binding to the peptidyltansferase centre of the 70S ribosome.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Antibiotic
Ampicillin is a penicillin derivative that is highly acid stable, with its activity similar to benzylpenicillin.
Antibiotic
Cefalotin is a semisynthetic cephalosporin antibiotic activate against staphylococci. It is resistant to staphylococci beta-lactamases but hydrolyzed by enterobacterial beta-lactamases.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Antibiotic
Rifampin is a semi-synthetic rifamycin, and inhibits RNA synthesis by binding to RNA polymerase. Rifampin is the mainstay agent for the treatment of tuberculosis, leprosy and complicated Gram-positive infections.
Drug Class
Rifamycin antibiotics are a group of broad-spectrum ansamycin antibiotics that inhibit bacterial RNA polymerase by binding to a highly conserved region, blocking the oligonucleotide exit tunnel, and preventing the extension of nascent mRNAs.
Resistance Mechanism
Mutational alteration or enzymatic modification of antibiotic target which results in antibiotic resistance.
Antibiotic
Tigecycline is an glycylcycline antibiotic. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
Glycylcyclines are a new class of antibiotics derived from tetracycline. These tetracycline analogues are specifically designed to overcome two common mechanisms of tetracycline resistance. Presently, there is only one glycylcycline antibiotic for clinical use: tigecycline. It works by inhibiting action of the prokaryotic 30S ribosome, preventing the binding of aminoacyl-tRNA.
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Resistance-nodulation-division (RND) proteins are found in both prokaryotic and eukaryotic cells and have diverse substrate specificities and physiological roles. However, there are relatively few RND transporters and they are secondary transporters, energized not by ATP binding/hydrolysis but by proton movement down the transmembrane electrochemical gradient.
Efflux Regulator
Protein(s) and two component regulatory systems that directly or indirectly change rates of antibiotic efflux.
Drug Class
Triclosan is a common antibacterial agent added to many consumer products as a biocide. It is an inhibitor of fatty acid biosynthesis by blocking enoyl-carrier protein reductase (FabI).
|
|||||||||