| Gene name | Length | Location | Length of alignment | Identity (%) | Coverage (%) | E-value |
|---|---|---|---|---|---|---|
| repA | 1101 | 1 - 1101 (+) | 1101 | 100 | 100 | 0 |
| RHS1 | 4255 | 121209 - 125459 (+) | 4255 | 100 | 100 | 0 |
| AriB | 1156 | 26116 - 27271 (+) | 1156 | 100 | 44 | 0 |
| Type match | Model name | Model type | Location | E-value | Identity | ||||
|---|---|---|---|---|---|---|---|---|---|
| Strict | tet(A) | protein homolog model | 21922 - 23121(-) | 0 | 99.75 % | ||||
|
AMR Gene Family
Directed pumping of antibiotic out of a cell to confer resistance. Major facilitator superfamily (MFS) transporters and ABC transporters comprise the two largest and most functionally diverse of the transporter superfamilies. However, MFS transporters are distinct from ABC transporters in both their primary sequence and structure and in the mechanism of energy coupling. As secondary transporters they are, like RND and SMR transporters, energized by the electrochemical proton gradient.
Antibiotic
Tetracycline is a broad-spectrum polyketide antibiotic produced by many Streptomyces. It works by inhibiting action of the prokaryotic 30S ribosome.
Drug Class
These antibiotics are derived from tetracycline, a polyketide antibiotic that inhibits the 30S subunit of bacterial ribosomes.
Efflux Component
Efflux proteins that pump antibiotic out of a cell to confer resistance.
Resistance Mechanism
Antibiotic resistance via the transport of antibiotics out of the cell.
|
|||||||||
| Strict | APH(6)-Id | protein homolog model | 24457 - 25293(-) | 0 | 99.64 % | ||||
|
AMR Gene Family
Phosphorylation of streptomycin on the hydroxyl group at position 6
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
|
|||||||||
| Strict | APH(3'')-Ib | protein homolog model | 25293 - 26096(-) | 0 | 99.63 % | ||||
|
AMR Gene Family
Phosphorylation of streptomycin on the hydroxyl group at position 3''
Antibiotic
Streptomycin is an aminoglycoside antibiotic used to treat different types of bacterial infections. Streptomycin works by binding to the bacterial 30S ribosomal subunit, causing misreading of mRNA and leaving the bacterium unable to synthesize proteins vital to its growth.
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
|
|||||||||
| Perfect | sul2 | protein homolog model | 26157 - 26972(-) | 0 | 100 % | ||||
|
AMR Gene Family
The sul genes encode forms of dihydropteroate synthase that confer resistance to sulfonamide.
Antibiotic
Sulfadiazine is a potent inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfadimidine is an alkaline sulfonamide antibiotic that inhibits dihydropteroate synthase, and enzyme in the tetrahydrofolic acid biosynthesis pathway. This interferes with the production of folate, which is a precursor to many amino acids and nucleotides.
Antibiotic
Sulfadoxine is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfamethoxazole is a sulfonamide antibiotic usually taken with trimethoprim, a diaminopyrimidine antibiotic. Sulfamethoxazole inhibits dihydropteroate synthase, essential to tetrahydrofolic acid biosynthesis. This pathway generates compounds used in the synthesis of many amino acids and nucleotides.
Antibiotic
Sulfisoxazole is an inhibitor of dihydropteroate synthase, interfering with the tetrahydrofolic biosynthesis pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor to many nucleotides and amino acids.
Antibiotic
Sulfacetamide is a very soluable sulfonamide antibiotic previously used to treat urinary tract infections. Its relatively low activity and toxicity to those with Stevens-Johnson syndrome have reduced its use and availability.
Antibiotic
Mafenide is a sulfonamide used topically for treating burns.
Antibiotic
Sulfasalazine is a derivative of the early sulfonamide sulfapyridine (salicylazosulfapyridine). It was developed to increase water solubility and is taken orally for ulcerative colitis.
Antibiotic
Sulfamethizole is a short-acting sulfonamide that inhibits dihydropteroate synthetase.
Drug Class
Sulfonamides are broad spectrum, synthetic antibiotics that contain the sulfonamide group. Sulfonamides inhibit dihydropteroate synthase, which catalyzes the conversion of p-aminobenzoic acid to dihydropteroic acid as part of the tetrahydrofolic acid biosynthetic pathway. Tetrahydrofolic acid is essential for folate synthesis, a precursor of many nucleotides and amino acids. Many sulfamides are taken with trimethoprim, an inhibitor of dihydrofolate reductase, also disturbing the trihydrofolic acid synthesis pathway.
Resistance Mechanism
Replacement or substitution of antibiotic action target, which process will result in antibiotic resistance.
|
|||||||||
| Perfect | AAC(3)-IId | protein homolog model | 80655 - 81515(-) | 0 | 100 % | ||||
|
AMR Gene Family
Acetylation of the aminoglycoside antibiotic on the amino group at position 3.
Drug Class
Aminoglycosides are a group of antibiotics that are mostly effective against Gram-negative bacteria. These molecules consist of aminated sugars attached to a dibasic cyclitol. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit (some work by binding to the 50S subunit), inhibiting the translocation of the peptidyl-tRNA from the A-site to the P-site and also causing misreading of mRNA, leaving the bacterium unable to synthesize proteins vital to its growth.
Resistance Mechanism
Enzymatic inactivation of antibiotic to confer drug resistance.
|
|||||||||
| Perfect | QnrS1 | protein homolog model | 108537 - 109193(+) | 6.836e-167 | 100 % | ||||
|
AMR Gene Family
Qnr proteins are pentapeptide repeat proteins that mimic DNA and protect the cell from the activity of fluoroquinolone antibiotics
Antibiotic
Ciprofloxacin is a bacteriocidal fluoroquinolone. It blocks bacterial DNA replication by binding to the toposiomerase II or IV-DNA complex (or cleavable complex), thereby causing double-stranded breaks in the bacterial chromosome.
Antibiotic
Levofloxacin is a synthetic chemotherapeutic antibiotic of the fluoroquinolone drug class. Its main target is topoisomerase IV, inhibiting its function and disrupting DNA replication.
Antibiotic
Moxifloxacin is a fourth generation synthetic fluoroquinolone chemotherapeutic agent, and has been shown to be significantly more active than levofloxacin (4 to 8 times more) against Streptococcus pneumoniae. It acts by inhibiting bacterial DNA topoisomerases.
Antibiotic
Gatifloxacin is an 8-methoxy, 7-piperazinyl, 6-fluoroquinolone that can be taken orally or by intravenous administration. It is active against most Gram-positive and Gram-negative bacteria, but inactive against non-fermenting Gram-negative rods including Pseudomonas aeruginosa.
Antibiotic
Nalidixic acid is a quinolone derivative of naphthyridine active against many enterobacteria, but ineffective against Ps aeruginosa, Gram-positive bacteria, and anaerobes. Acquired resistance is common in nalidixic acid treatments.
Antibiotic
Norfloxacin is a 6-fluoro, 7-piperazinyl quinolone with a wide range of activity against Gram-negative bacteria. It is inactive against most anaerobes.
Antibiotic
Sparfloxacin is a dimethylpiperazinyl difluoroquinolone that acts by inhibiting DNA gyrase. It is active against aerobic Gram-positive and Gram-negative bacteria, as well as some mycobacteria. It has moderate activity against some anaerobes.
Drug Class
The fluoroquinolones are a family of synthetic broad-spectrum antibiotics that are 4-quinolone-3-carboxylates. These compounds interact with topoisomerase II (DNA gyrase) to disrupt bacterial DNA replication, damage DNA, and cause cell death.
Resistance Mechanism
Protection of antibiotic action target from antibiotic binding, which process will result in antibiotic resistance.
|
|||||||||